Plastic anisotropy and dislocation trajectory in BCC metals

نویسندگان

  • Lucile Dezerald
  • David Rodney
  • Emmanuel Clouet
  • Lisa Ventelon
  • François Willaime
چکیده

Plasticity in body-centred cubic (BCC) metals at low temperatures is atypical, marked in particular by an anisotropic elastic limit in clear violation of the famous Schmid law applicable to most other metals. This effect is known to originate from the behaviour of the screw dislocations; however, the underlying physics has so far remained insufficiently understood to predict plastic anisotropy without adjustable parameters. Here we show that deviations from the Schmid law can be quantified from the deviations of the screw dislocation trajectory away from a straight path between equilibrium configurations, a consequence of the asymmetrical and metal-dependent potential energy landscape of the dislocation. We propose a modified parameter-free Schmid law, based on a projection of the applied stress on the curved trajectory, which compares well with experimental variations and first-principles calculations of the dislocation Peierls stress as a function of crystal orientation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of the local environment on the mobility of dislocations in refractory bcc metals: Concurrent multiscale approach

Using a concurrent multiscale approach we demonstrate that the local environment of transition-metal solutes in refractory bcc metals has a large effect on the mobility and slip paths of dislocation. The results reveal that solid solutes or nanoclusters of different geometries may lead to solid-solution hardening or softening, in agreement with experiment, including spontaneous dislocation glid...

متن کامل

Dislocation nucleation in bcc Ta single crystals studied by nanoindentation

The study of dislocation nucleation in close-packed metals by nanoindentation has recently attracted much interest. Here, we address the peculiarities of the incipient plasticity in body centered cubic bcc metals using low index Ta single crystals as a model system. The combination of nanoindentation with high-resolution atomic force microscopy provides us with experimental atomic-scale informa...

متن کامل

Yield Functions and Plastic Potentials for BCC Metals and Possibly Other Materials

Yield functions and plastic potentials are expressed in terms of the invariants of the stress tensor for polycrystalline metals and other isotropic materials. The plastic volume change data of Richmond is used to evaluate the embedded materials properties for some bcc metals and one polymer. A general form for the plastic potential is found that is intended to represent and cover a wide range o...

متن کامل

Investigation of Interaction between Dislocation Loop and Coherent Twin Boundary in BCC Ta Film during Nanoindentation

In this work, the interaction between dislocation loop (DL) and coherent twin boundary (CTB) in a body-centered cubic (BCC) tantalum (Ta) film during nanoindentation was investigated with molecular dynamics (MD) simulation. The formation and propagation of <111> full DLs in the nanotwinned (nt) Ta film during the indentation was observed, and it was found that CTB can strongly affect the stress...

متن کامل

Overall Model of Plasticity and Failure of Metals

Plastic flow evolution was investigated for various metals and alloys, which differed in chemical bond and crystal lattice type (BCC/FCC/HCP), structural state (single-crystal/polycrystalline) and deformation mechanisms (dislocation glide/twinning). On the base of conclusive evidence it is attempted to explain the phenomenon of plastic flow localization by invoking a fundamental principle of qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016